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ABSTRACT

The distortion of flames in flows with vortical motion is ¢xamined via asymptotic analysis and
numerical simulation. The model consists of a constant-density, onc-step, irreversible Arrhenius
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reaction between initially unmixed species occupying adjacent half-planes which are then allowed
to mix and react in the presence of a vortex. The ¢volution in time of the temperature and mass-
fraction ficlds is followed. Emphasis is placed on the ignition time and location as a function of
voriex Reynolds number and initial temperature differences of the reacting specics. The study
brings out the influcnce of the vortex on the chemical reaction. In all phascs, good agreement is
observed between asymptotic analysis and the full numerical solution of the model equations.
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1. INTRODUCTION

In a seminal paper, Marble (1985) developed a simple model problem which describes the distortuon
of a diffusion flame by the presence of a viscous vortex flow, as might be found in the large scale structures
of turbulent diffusion flames. Assuming fast chemical kinetics and the constant density approximation, a
flame shect exists at time zero separating a region of fuel in the upper half plane and a region of oxidizer in
the lower half plane. As time increases, the flame sheet is allowed to evolve by diffusion and convection
and is wound up by the vortex flow field. The analysis was based on the assumption that the flame clements
are locally strained and sheared, but that the shecaring motion was unimportant and hence could be
neglected. Theorctical analysis shows that (i) the vortex field increases the reactant consumption, (ii) the
reacuon rate is independent of time, (iii) a similarity rule for the core radius growth exists, and (iv) a simi-

larity rule exists for the reactant consumption rate.

The analytical problem posed by Marble (1985) (henceforth called the Marble problem) has been
solved numerically by Laverdant and Candel (1988) and Rehm, Baum, Lozier and Aronson (1989), but
without the strain-shear approximation. Thus the complete flow ficld was considered. Laverdant and Candel
(1988) solved thc Marble problem by an implicit finite difterence scheme. They veritied numerically
Marble’s similarity rule for the core radius growth and the result that the reaction rate is independent of
time, and also verified the correctness of the shear approximation. In addition, the effect of varying the
stoichiometric (or equivalence) parameter was also studied. They showed that the core is mostly surrounded
by thc oxidizer when the stoichiometric parameter is Iess than unity (fuel lean), and is mostly surrounded by
the fuel when it is greater than unity (fucl rich). Rehm, et al. (198Y) solved the Marble problem by first
transforming the system into a Lagrangian coordinate system. Then assuming a similarity solution, the
resulting problem was solved analytically using Founer series. The Fourier amplitudes were determined by
cither a two-point boundary-value solver, valid for all values of the independent parameters, or in the
asymptotc limit of large Schmidt number (as might be more appropnate for liquids than for gases). The
results of this study confirmed the behaviour of the numerical solution of Laverdant and Candel (1988), as
well as the dependency of the reactant consumption rate found by Marble (1986). Norton (1983) also
solved the Marble problem with the strain-shear approximation, but using finite rate chemistry instead of the

flame sheet approximation, confirming the results of Marble.

Many extensions of the Marble problem cxist, each utilizing the same analytical approach as that of
Marble (1985) and assuming the fast chemistry limit, some of which are briefly reviewed here. Karagozian
and Marble (1986) considered the time dependent interaction of a diffusion flame with an axially strained
vortex in the third dimension. it was shown that the main conclusions for the three dimensional voriex ficld
remains formally identical 10 the two dimensional vortex ficld (the Marble problem). In addition, density
effects were shown 1o be small. Karagozian and Manda (1986) considered the distortion of a two dimen-
sional fuel strip in the presence of a pair of counter-rotating vorticies. The fuel sirip was assumed cither
infinite or semi-infinite in extent, separated from the oxidizer by two flame sheets. On cach flame sheet
resides a vortex, which are allowed 10 rotate in opposite directions. The semi-infinite fucl stnp is particu-
larly relevant 1o the vortical flame structure formed at a circular oritice or nozzle. Cetegen and Sirignano
considered the interaction of a diffusion flame with a single vortiex (1987) and the interaction with an
infimte row ol two dimensional vortices, which is representative of the temporal growth of a mixing layer

before pairing has occurred (1988). In both cases, the emphasis was on the construction of the concentration




profiles in the vortical structure, as well as, the construction of the probability density functions (pdfs). A
revicw of these two cases can be found in Sirignano (1989). Peters and Williams (1988) developed an
analogous problem for a premixed flame, relevant for describing premixed turbulent combustion in large
scaie suuctures. The emphasis of this study was in describing the growth of the reacted core, flame extine-
tion by stretch for Lewis numbers greater than unity, and the celffect of heat release.

In another seminal paper, Linan and Crespo (1976) examined the structure of a diffusion flame in the
unsteady mixing of two half spaces of fuel and oxidizer. By using a combination of large activation energy
asymptotics and numerics, they analyzed the continuous cevolution from nearly frozen flow 10 near equili-
brium flow and showed that three laminar regimes exist within the tlow; the ignition, deflagration, and
diffusion flame regimes. The igniton regime is a region where the combustible gases mix until, at some
finite time, a thermal explosion occurs at a well defined location and the gas is ignited. The second regime
is the deflagration region. After ignition, a pair of deflagration waves (or "premixed flamelets™) emerge
according to classical thermal explosion theory. These waves arise because the mixture is pot stoichiometric
in the premixed region. One of the reactants is consumed locally, leaving behind an excess of the other
reactant. Thus, one of the flamelets is fuel-rich and the other is fuel-lean. There is cxcess fuel behind the
fuel-rich flamelet and excess oxidizer behind the fuel-lean flamelet. Concentration gradients behind the
flamelets drive the unburnt fuel and oxidizer towards the diffusion flame where they are consumed locally.
These premixed flamelets are guite weak in that the temperature rise associated with them is small, and they
cxist only unul all of the deficient reactant is consumed. Just beyond the deflagration waves, a diffusion
flame regime exists where the mixing process is governed by diffusion in the direction normal to the flame.
As time increases, the diffusion flame approaches a flame sheet. We note that the existence of a well
detined 1gnition point and the premixed flamelets depends critically on the relative magnitudes of the two
initial wemperatures 1o that of the adiabatic diffusion {lame temperature. That is, if the adiabatic diffusion
flame temperature s greater than cither initial temperature, a well defined ignition potat always occurs, {ol-
lowed by the premixed flamelets. On the other hand, if the adiabatic diffusion flame temperature is between
the two inwal temperatures, there is no well defined ignition point, and a single premixed flame merges
smoothly into the diffusion flame. The analyucal resulis of Linan and Crespo werc extended by Jackson and
Hussaini (1988) and Grosch and Jackson (1991) in their studies of stcady supersonic combustion in
compressible laminar mixing layers. In particular, the three flame regimes also exist at high speeds provided
the adiabatic diffusion flame temperature is greater than cither {reestream temperature. Finally, we note that
this contiguration ol two flamelets and a diffusion flame (collectively called a wibrachial flame) has also
been observed in the propagation of a premixed tlame ino a nonuniform mixture (e.g., Buckmaster and
Matalon, 1988).

Our goal is 10 combine the models of Marble (1985) and Linan and Crespo (1976). That is, we pro-
posc o mvestigate the continuous evolution of initially unmixed species occupying adjacent half planes 1o
near cquilibrium flow in the presence of a viscous vortex without invoking the fast chemistry limit.
Emphasts is placed on the ignition time and location as a function of voriex Reynolds number and initial
temperature ditterences of the reacting species. In the next section we state the problem. Scction 3 presents
an analysis o the igmition reyime using a combination of large activation energy (and hence Zeldovich
numben) asymptotes and numeries. Section 4 presents a simple model problem for the diffusion flame
regune desenibing the viscous core region about the tlame sheet, and idenufies certain physical effects by

cmploying asymiptotc expansions and numerical solutions. The {ull equations are then solved numerically
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in section 5. Comparisons between asymptotics and numerics are given through out the study. Finally, our
conclusions are presented in section 6.

2. EQUATION FORMULATION

In this section the problem for the time evolution of initially unmixed species occupying adjacent
half-planes which are then allowed to mix and react in the presence of a vortex is stated. The nondimen-
sional equations, boundary conditions and initial conditions governing this ficld in cylindrical coordinaies

are
U =0, V = w[l ~exp(—r2/4t Sc)), (2.1a)
r
. V.. 2.
T, + —Te=V"T+BQ, (2.1b)
r
V .
Fiu+—F o= VIF, -Q, j =12, (2.1¢)
Q=DaF Fye®T, (2.1d)
T=F =1F;=0 at 1 =0,r>0,0<08<m, and 1 >0,r 500, 0<O<m, (2.2a)
- FZ.—@ -1
1=B7',F1:0,F2=r E(p at IZO,I'>0,1T<0<27[,
7

and 1 >0,7r —» o0, T<B <27, (2.2b)

where (U, V) are the radial and angular velocity components, respectively; V2 is the two-di- . nsional Lapla-
cian operator in cylindrical coordinates; T is the temperature; and F; and £, the mass {r .cuons. The chemi-
cal model is a onc-step urreversible Arrhenius reaction, and the vortex model is an Oscen vortex with circu-
lation I". The nondimensional paramcters appearing above are the voriex Reynolds number R, detined as
I' / 2rv where v is the kinematic viscosity; the Schmidt number S¢ = v/ D a<.anned cqual for both species
and D is the species diffusion coefficient; the Zeldovich number Ze = E /7% T.)) with E the dimensional
activation cnergy and R° the universal gas constant; the Damkohler nun.her Dy defined as the ratio of the
characterisuc diffusion time scale to the characteristic chemical time cale; B the heat release per unit mass
of F; the equivalence ratio ¢ defined as the ratio of the mass fruction £ to the mass fraction £, divided
by the ratio of their molecular weights times their stoichiometric coefticients; and finally By the ratio of the
initial temperatures. 1t ¢ = 1, the mixture is said 1o be stor hometric, if ¢ > 1 atas /7 rich, and it ¢ < 1, it
is Fy lean. Also. if B, i< less than one, F 5 is relatively cold compared 10 F, and i B, is greater than one it
is relatively hot. The temperature and mass fractions were nondimensionalized by the values T, and £, .,
respecuively. The velociies were nondimensionalized by U, some characteristic speed. Lengths and times
arc referred o the relevant diffusion churacteristic scales Iy = A/pC, U, and [;/U, of the flow,
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respectively, where p is the density assumed constant, A is the thermal conductivity, and C, is the specific
heat at constant pressure. Finally, the assumption of unit Lewis number is made, so that S¢ = Pr, where Pr
is the Prandtl number.

3. IGNITION REGIME

At time ¢ = 0, the reaction rate is exactly zero owing 1o the product £ F5 = 0. For 1 > 0, the fuel and
oxidizer begin to mix by diffusion, as well as by convection due to the presence of the vortex, and the reac-
tion ratc is no longer zero. For small time, it can reasonably be assumed that the cffect of the reaction is
small, and in the absence of reaction term the system (2.1) reduces to

T, +R—‘EC[I-exp(~r2/415c)l'l‘e=V2T, (3.1a)
r

Fpo+ B3E(0 exp(=r¥a0Se)IF, o= V2F,,  j=1,2. (3.1b)
r

The above system must be solved numerically subject to the conditions (2.2), and its solutions are referred
10 as the inert solutions, denoted by

Ty =1;(r.6.1), Fip=F,,0r,0,0), j=12, 3.2)

As time increases, more of the combustible mixes untl, at some finite time, a thermal explosion occurs
characterized by significant departure from the inert.

To analyze the ignition process, we determine the effect of the growing reaction rate by expanding
about the incrt solution as

T=T +27'T, F,=F; +Z7'F;, j=12, (33)

and take the asymplotic limit Ze — oo. Substituting into (2.1), we see that the left hand sides are O (Ze™)
while the right hand sides are O (Dua e_h r'), where 1. = max(1;). In order to balance thesc terms, Da
must therefore have the form

Da = 4
a Bz (34)
Substituting into (2.1b) yields the following equation for T,
T, + B—g—‘ (1 —cexp(~r2/d1SOHIT, g= V2T,
r

- oo T\ +Ze(l; - T))
+ ‘Fv"] + Ze Fl,i‘lFll"'l(-’ lelCXp ™ - - T R (35)

' ' It('ll'f'/.(.’—ll)
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which must be solved subject to the initial and boundary conditions
T'=0 ar t=0,r>0,0<0<2n, and {>0,r -, 0<0<2n. 3.6)

Once T, is known, the mass fraction perturbations can be found dircctly from (2.1¢). Note that the right
= O(Ze™"). There are now two cases to

hand side of (3.5) is exponentially small except where |T, - 1.
consider, depending upon the magnitude of the parameter |1 — B;|. In this section we only consider the case
of nearly equal initial temperatures (B = 1), and will postpone the -analysis for O(1) inital temperature
differences as a topic for future rescarch.

As mentioned above, only the important case of ignition for néarly equal inital emperatures of the
fuel and oxidizer is considered. To this end, we sect

Br=1+Ze ' By, 3.7
with B; fixed and O (1). With this choice, the inert temperature T; is given by

T, =1+27'T, (3.8)
where T; | satisfies (3.1a) subject to the initial and boundary conditions

7,,=0 at t=0,r>0,0<0<m and 1t >0,r 5 ,0<8<m, (3.9a)

T, =PBr at 1=0,r>0,m<0<2n, and 1 >0,r - o, T<O<2m. (3.9b)

Substituting into (3.5), together with the asymptouc choice 7. = 1, yields the following cquation for the dis-
turbance temperature

R Sc
;2

T, *T/“.

(3.10)

T+ (1 —exp(=r2/41Sc)IT) o= VP, + F,  Fq,e

subject to the conditions (3.6). This equation was solved numerically for a range of R and Br with
S¢ = ¢ =1. Implementation of boundary conditions are facilitated if the system is recast in Cartesian coor-
dinates. The solution technique is a 2nd-order finite difference scheme on a nonuniform mesh. To resolve

the structure in the core region of the field, a coordinate stretching of the form

c,-1 | .
Yp = 2 Ymax Yo (311)

1s used, where y, € [~Ymax, Ymarl is the physical coordinate, y, € {-1,1] 1s the computational coordinate,
and C,; and C, are adjustable constants, The smaller the quantity (C, - 1), the stronger the stretching. In
the y direction, C; is cither 4 or 2, and C5 is 2. A similar stretching is used in the x direction, with Cy = 4
and C, = 2. To avoid the singularity at the origin, no mesh points are placed there. The outer boundaries
arc set at 50 or 200 for x,,,, and 20 or 50 for y,,. Grid resolution studies which at least doubled the com-
putational mesh were carried out to ensure that structurcs were well resolved. The resolutions required
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ranged from a 642 mesh to a 2567 mesh for large vortex Reynolds number (R = 5000). The time-stepping
scheme is a four-stage Runge-Kutta which is formally 2nd-order but has an extended stability region making
it accurate and robust for moderately suff problems. All runs were performed interactively on a Cray YMP.

As 1 increases, the solution for T becomces unbounded at some finite time (1, ) and location (x;, , ;).
This characterizes the ignition regime. The special case R = 0, in which two initially unmixed species are
allowed to diffuse without the mixing generatcd by the vortex, corresponds to the results of Linan and
Crespo (1976). To verify the solution technique described above, we give a comparison of our results to
that of Linan and Crespo in Table I. For this case ignition takes place along a line parallel to the x -axis
which is located at y = 0 for B; = 0 and resides in the hotter region for By # 0.

The etfects of the vortex can be seen by examining Figures 1 and 2 and Table II. Figure 1 is a plot
of the ignition times 1, versus the voriex Reynolds number R for three values of Br with Sc = ¢ = 1.
Table I1 contains selected ignition times as a function of R for the three values of By of Figure 1. The
effect of increasing By from zero (ie., By > 1) is to enhance ignition, while decreasing BT from zero (i.e.,
B+ < 1) has the opposite effect. One can see from Figure 1 and Table I that the vortex Reynolds number
has litde elfect on the overall ignition time. However, ignition now occurs at a point rather than along an
entirc line. This effect is shown in Figure 2 where the ignition locations y,, versus x;, are ploued for vari-
ous values of R and By = ~2. Note that as R increascs, the ignition location spirals clockwise towards the
viscous core center. Ignition is seen to occur within the core for vortex Reynolds numbers R > 70. This is
in contrast to the case of equal initial temperatures (B, = 0), where ignition always occurs at the origin for
any value of R. The analogous plot for By = 2 has essentially the same characteristics as Figure 2. In sum-
mary, ignition occurs in the region of the initially hotter reactant for small R, and spirals clockwise towards

the viscous core center as R increases.

Figure 2 indicates that the ignition location is at its maximum from the center of the vortex at approx-
mmately R = 28. Surface plots of Ty and £, ; shown in Figures 3a,b, respectively, display the skewed struc-
ture of the reaction core at these conditions. The development of the hot spot for By = -2 as a function of
increasing R 1s shown in the contour plots of Ty and £, in Figures 4 and 5, respectively. The structure of
the reaction core develops from an asymmetrically skewed center (Figures 4a-¢) 10 an axisymmetric center
(Figure 4d). However, the local structure of the hot spot within the reaction core is axisymmetric for any
value of the vortex Reynolds number greater than zero. This fact is more clearly scen in Figure 6 where we
plot T versus y at the ignition location x,, and tme 1, corresponding to the same conditions given in Fig-
urc 4. From this figure it is clear that once the hot spot develops within the reaction core, it is axisym-

metric.

For completeness, a contrast ol the effects of a potential vortex distribution (V = R Sc /r) versus the
Oscen vortex, given in (2.1a), on the ignition locations arc made. Figure 7 1s a plot of y,, versus x,, for the
potential vortex for the samie conditions as in Figure 2. Note that the collapse of the spiral into the center
occurs for R > 7, as opposed to the value R > 70 for the Oscen vortex.

The numenical solutions presented above suggests that near thermal runaway, a hot spot develops at
(r

' 0
convection is not important and the local structure of the hot spot is diffusion controlled. In this case, Dold

) within the reaction core and that the structure of this hot spot 1s axisymmetric (sce Figure 6). Thus,

(19¥5. 1989} has shown that the proper scalings charucterizing the local structure of the hot spot are given
by
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x =rgcosB, +pu()scosd, y =rsin6, +pu(t)ssin®, T=1, ~ 1, (3.12)
where
pAT) = o - In(Q;, 1)) = 1§, (3.13)

as T —> 0, with Q;, =F,, Fy, eT’-‘ evaluated at (r,9,1) = (r;,0,;.4,), and a is a constant determined by
matching with the initial conditions and is a function of the parameters (R,Sc,¢). With these scalings, and
ignoring all dependence on 8, the asymptotic form of T', in the hot spot is given by

. In& S+a 54
T,=-n(Q, ©)-In(1+s2d) - =" = 22
1 ( g) ( ) é 2 1+52/4

1| 1+4 s2/4 2 In’¢
+ — - In(1 +s“/4) | + O , 3.14
el " T )|+ 0 (3.14)

with # =0 if r;

8
develops, is independent of the influence of the voriex and so is diffusion controlled. We are currently

#0 or A =11l r, =0. Again note that the local structure of the hot spot, once it

investigating the future time development of the hot spot, and the subsequent flame development.

4. DIFFUSION FLAME REGIME

Typically, a diffusion flame is characterized by a chemical reaction time that is much smaller than a
characteristic diffusion time. Chemical reactions then occur in a narrow zone between the fuel and the oxi-
dizer, where the concentrations of both reactants are very small. Mathematically, the assumption of very fast
chemical reaction rates leads to the limit of infinite Damkohler number which reduces the diffusion flame to
a flame shect (i.e., local chemical equilibrium). This assumption significantly reduces the complexity of the
problem since it eliminates the analysis associated with the chemical kinetics. For many flows, the assump-
tion of local chemical equilibrium adequately predicis the location and the shape of the diffusion flame
(Buckmaster and Ludford, 1982; Williams, 1985). Since the flame sheet model is amenable 10 analysis, we
give its structure below. For finite values of the Damkohler number, equations (2.1) must be solved numeri-

cally and this is done in the next section,

We begin the analysis of the diffusion flame regime by defining the following conserved variables
(sce, e.g.; Williams, 1985):

T+BF =By +(1-Pr +P)Z, (4.1)

T+BFa=Br+Bo" +(1-Pr-PoHz, (4.2)
AN A -1

Z:f—l—ﬂ, @3)

1+~




-8-

where Z is the mixture mass fraction and satisfies the convection-diffusion equation

RS

2c [1—exp(~r2/4t8c)Zg=V?Z, 4.4)
r

Z +

subject to the initial and boundary conditions

Z=1 at 1=0,r>0,0<0<n, and 1t >0,r 5, 0<0<m, (4.5a)
Z =0 at t=0,r>0,mr<0<2n, and t >0,7r 50, <O <27, (4.5b)

In the limit of infinitc Damkohler number the flame sheet solution is given by

Fi=1-+o1HA - 2), F,=0, (4.6a)
T=Br+Po7 +(1-PBr-BoHZ, (4.6b)
valid for 7 > 7; , and
F, =0, Fo=¢"' - +0oHZ, 4.7a)
T=Br+1-Br+Pz, 4.7v)

valid for Z < Z,. Here, Z; defines the location of the flame sheet where both the reactants vanish, given by
the implicit relation

Z = o (4.8a)
and T takes the adiabatic flame value
1+B,0+B ,
1, = — 4.8b
/ I+¢ (4.80)

Note that the flame location is independent of By and B. Once Z = Z(r,0,t) is known, then the other vari-
ables (1, F 1, F ») can be tound from (4.6)-(4.7).

As discussed in the Introducuon, equatior (4.4) tor Z has been solved numerically by Laverdant and
Candel (19¢8) and Rchm, Baum, Lozicr and Aronson (1989). Our goal is not the numerical solution of
(4.4). Rather, we propose in the following subsections a simple model problem describing the viscous core
center in a region about the flame sheet, with the goal of idenufying certain physical effects by employing

asymptotic expansions.
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4.1. LOCAL ANALYSIS ABOUT FLAME SHEET

In this section we formulate a model problem describing the effect of the vortex in a neighborhood
about the flame sheet. Assume at time ¢ = 0 a flame sheet exists at y,. In the absence of a vortex, the mix-
ture mass fraction evolves according to (4.4) with R = 0, and the analytical solution can be written in terms
of an error function. At any instantancous time ¢, , the solution across the flame sheet is easily seen to be a
lincar shear profile (Figure 8), given by

1
1+¢

Z(r,8,1,) = +Z7U) 6~y (), (4.9

which is only the first-order Taylor series expansion of the mixture mass fraction profile Z about the flame
sheet location y,, found implicitly by (4.8a). Here, the prime denotes differentiation with respect to y. The
model problem assumes that the time scale associated with the vortex is faster than that of diffusion, so that
on this time scale the linear profile (4.9) can be considered steady. In addition, we assume that the flame
sheet resides close to the origin. Thus the following scales can be introduced

F.ooo=1+E, z=%+~'sz, (4.10)

with € << 1, and the vortex is turned on at time 1 = 0. With these scalings the lincar shear profile, in terms
of Z, becomes

~

7(,6,0) = —% 2T =Y = k4 koY @.11)

Note that k; = -0/4 - Z/'(tv))?f (1, ) measures the instantancous deviation of Z from its stoichiometric value
Zr=1/2 a { =0, and ko= Z,f(to) measures the instantancous gradient of the mixture mass fraction across
the flame sheet. The convecuon-diffusion equation (4.4) in lerms of the perturbation mixture mass fraction

Z becomes

Z‘+RSC

, S {1 - exp(—72141 S Zy = VP, 4.12)
r

where V2 is the Laplacian operator in the transtormed plane. The perturbation equation (4.12) is 10 be
solved subject to the initial and boundary condition given by the linear shear profile (4.11).

To examine the time evolution of the flame shect about the origin when the vortex is present, we

define
Z(F.0.0) =k, +k,[Fsin® +Z(,0,0)], (4.13)

where Z is the disturbed mass fraction due to the presence of the vortex. Upon substituting (4.13) into
(4.12), we find that Z satisfies the convection-diffusion equation
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7:.‘+RS

o+ DS (1 - exp(~ 72141 Se)] (F cos + Zg) = V22, (4.14)
r

subject to homogeneous initial and boundary conditions. Note that (4.14) is non-homogencous, and hence
does not have a similarity solution. Here, we introduce the variable

(4.15)

L,
1
SN

which is the similarity variable in the absence of the vortex, so that Z = Z(s,6,7). In the ransformed plane
Z satisfies
R Sc

b
P

s

(1 - exp(-s2/4Sc)] (s V7 cos@ + Zg) = V27, 4.16)

This equation Is separable in space and time and hence has the simple analytical solution

7 =N1 12, (s)cosB + 7, (s)sin 81, (4.17)
where
%(Ze —sZ)+ Rfc (1 -cexp(~s24SH(Z, +s)=2, + % - 51—2/ , (4.18)
%(2‘, —52) - B3 Cexp(-strasenZ, =2+ %/ - :L , (4.19)
subject to the boundary conditions
Z,(0) =2, (0) = Z, (=) = Z, () = 0. (4.20)

Here, primes denote ordinary differentiation with respect to the similarity variable s, Z, s the amplitude of
the even mode, and ZU is the amplitude of the odd mode. Note th.at the above solution is valid for all times
and vortex Reynolds numbers.

The system (4.18-4.19) subject to (4.20) was solved numerically using a 2nd-order finite difference
scheme with an appropriate stretching in 5. The solution to this system for a range of vortex Reynolds
numbers 1s given n Figure 9. As the vortex Reynolds number increases, the number of oscillations in each
of the components Z, and Z, also increascs while moving away from the origin, thus establishing a core
region. The composiw solution (4.13) is plotted in Figure 10 for 1 =1, 8 = +1/2, ko= 1, k; = 0, and
S¢ = 1. From this tigure the extent of the core region is seen to grow as R increases, and this core, once
established, grows like i (sec (4.17)) as noted previously by Marble (1985).
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4.2. LARGE TIME BEHAVIQOUR

To invesugate the local structure of the model problem described in the previous section for large
times, let { —> o0, 50 that s — O for fixed 7. Hence from (4.17) we have

a

7

i

lim Vr [Z,(s)cos 0 + Z,(s)sin0)

t — 00

I

limo —Sr—[Ze(s)cose + 20 (s)sin9]

lim L (Z.(s)% + Z,(5)§ ]
s -0 S
0% b5, @21

where from (4.18) and (4.19) it is casy to show that the asymptotic behaviour as s — O is
Z, =ays + 0(s?), Z, = bs + 0(s%). (4.22)
Here, a; and b, are to be found numerically. Substituting (4.22) into (4.13) yields
Z=k +kola E+(+b)y]. 4.23)

Comparing (4.23) to (4.11), the effect of the vortex is seen to establish a new equilibrium mixture mass
fraction profile within the core region.

Another quantity of interest is the magnitude of the gradient of the mixture mass fraction, defined as

7 2 37 27112

G=||=" =W . 4.24

Note that G is a function of R, ¢ and Sc. Substtuting (4.23) into (4.24), we see that the magnitude of the
gradient in the center of the core is given by

G =k [a3+(1+b1)2Jm. (4.25)

Figure 11 is a plot of G versus R for Sc =¢ =k, = 1. Note that as R —» e, G — 0 which implies that
there are no gradients within the center of the core, and hence no diffusion across it. Thus, the core is com-
pletely established. From this figure it is clear that the core is 95% established at R = 50. This is in agree-
ment with Figure 10 where a well defined core is clearly visible at R = 100.
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4.3. LARGE VORTEX REYNOLDS NUMBER ASYMPTOTICS

To investigate the local structure of the model problem described in Section 4.1 at large vonex Rey-
nolds numbers with R >> 1, we begin with the equation

Z; + _i (1 —exp(~=R F214()1Zy = ViZ, (4.26)
=2

which is (4.12) with 7 scaled as 7 = FVS5¢ R . The above cquation is solved subject to the initial and boun-
dary conditions

Z =k +kyy at 1>0,F 500,0<8<2n, and [ =0,F>0,0<6<2m. 4.27)

OUTER INVISCID SOLUTION -- Z¢

In the limit R — <o, an outer inviscid region exists and is governed by the following inviscid version of
(4.26),

= [ =

Z’+ 75 =0, (4.28)
r

where Z¢ denotes the mixture mass fraction in the outer inviscid region. This equation is valid for

F=0(Q)and [ < O (R), so that the cffect of a potential line vortex or an Oseen vortex is the same. The

solution is easily found by the method of characteristics and is given by

2% =k, + k, Fsin8,, (4.29)
where 6 1s the characteristic
] .y
Bo =4 - - \4.30)
r

INNER SOLUTION -- Z/

As 7 —» 0, the solution (4.29) becomes singular so the viscous terms in (4.26) must be retained. We intro-

duce the similarity type variable




4.31)

where 8 << 1 and will be chosen in the course of the analysis. Defining Z' 10 be the inner variable, and
expanding

Z' =k, +k, V81 7 (s.8), (4.32)

we see that Z satisfies the convection-diffusion equation

(2 -s2)+ —51—2 (1 - exp(~R 552/4)] Z = V27, (4.33)
R

8Sc R

To facilitate matching with the outer inviscid solution (4.29), we change to a new (non-orthogonal) coordi-
nate system in which the characteristic 6, is one of the coordinates. Thus, the above equation in terms of s
and 6, becomes

W(Z~-5s2Z)- éexp(—R 852/4)290

2
o [[a, 2 a V(a2 2, 1),
—SSCR{[astﬁﬁ 890]+s[as+5s3 690]+s2 aeg}(z)‘ (4.34)

To balance both sides we must choose

— (4.35)

or, in terms of §,
8=(R Sc)™'3. (4.36)

For this scaling, exp(-R 8s52/4) is exponentially small in the limit R — oo, and so again the cffect of a
potential line vortex or an Oseen vortex is the same. The leading order equation in a §-expansion is given
by

4 5

WB(Z -s2Z)= = /6,8, 4.37)

This equation can be solved by separation of variables and, aficr matching with the outer solution (4.29), the

solution is found to be

Z=35 cxp{ —3:% } sin 8, (4.38)
5
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The inner viscous solution is now given by

Z! =k, +k25\/-5—t‘r exp[;—t-]sineo. (4.39)
s
COMPOSITE SOLUTION
The composite solution
— — . 3 .
Z=k1+k27exp{—‘33(—i—’)—Jsin[e—:‘z—J, (4.40)
F F

is valid for times f << &', Figure 12 displays the composite solution Z versus s for 8 = +7/2, with
k1 =05,k,=1,6=0.05, and { = 1. Note the agreement with the numerical solution given in Figure 10.

The magnitude of the gradient of the mixture mass fraction can be obtained by substituting (4.40) into
(4.24). Then as & — 0, the leading order result yields

21k
o - 2l
Os

-4 1
— ||cos (@ — —)|. 4.41
eXp[ 356 }I ( 552 ( @.41)

Figure 13 is a plot of G versus s for 8 = n/2, k, = 1, and § = 1/ 10. Note that the maximum amplification
is about 87!, The limit R — O corresponds to G — 0, and so the large spikes have been created by the vor-
lex.

The core radius growth can be determined from (4.31) and (4.36), and is found to be

F

————————— = Constant, (442)
V(Re Sc) ™31
or, in terms of dimensional quantities (denoted by stars),
r‘
———————— = constant. (4.43)

This is the main result of Marble (1985), who showed constant = 0.5092 + O(ND* /T"). Finally, we note
from (4.43) that the spreading of the viscous core due to the voriex ficld is (I'" /D" )¥? times as large as
that obtained from diffusion alone in the absence of the vortex, as previously pointed out by Marble (1985)
and Karagozian and Marble (1986).

p—




5. NUMERICAL SOLUTION

In this section we present selected numerical results to the full system (2.1) subject to (2.2). This sys-
tem was solved by a standard finite difference scheme, as previously described in Section 3. To illustrate the
numerical solution of (2.1-2.2) of the continuous evolution from nearly frozen flow to near equilibrium flow,
we produce here one result corresponding 10 the case Sc = ¢ =1, R =28, Ze =30, Da =130, B =1,
and By =1 - 2/30. This case corresponds to the asympiotic results of Section 3 as displayed in Figures 3-
6. Figure 14a is a plot of the time slices of the temperature profile 7', while Figure 14b is a plot of the time
slices of the reaction rate term €. Time increases from the bottom left corner to the top right corner. In
Figure 14a, a hot spot develops initiaily within the viscous core (frame 1) and rapidly develops into an iso-
lated, almost circular flame which grows as time increases (frames 2-8). At a laler ume (frame 7) two
diffusion flames are clearly visible at the edges of the plot, and as time increases further (frame 8) they
move towards the viscous core. Eventually the two diffusion flames will merge with the expanding, almost
circular flame located in the viscous core region. Figure 14b shows corresponding results for the reaction
rate term. Initially (frame 1) a single isolated point in the rate term is visible. As time increases (frames 2-
8) this single point develops into an almost circular ring and spreads in time, leaving within it the bumt
core. The reaction rates of the two diffusion flames are given in frames (7-8).

6. CONCLUSIONS

The distortion of flames in flows with vortical motion has been examined by means of asympiotic
analysis and numerical simulation. The model consisted of a constant-density, one-step, irreversible
Arrhenius reaction between initially unmixed species occupying adjacent half-planes which were then
allowed to mix and react in the prescnce of a vortex. The continuous evolution of the temperature and mass
fraction ficids from initially unmixed to near equilibrium flow was followed. Emphasis was placed on the
ignition time and location as a function of vortex Reynolds number and initial temperature ditferences of
the rcacting species. In the ignition regime, the case of near equal initial temperatures was considered. The
effect of increasing the inital temperature ratio $y slightly {rom unity was to enhance ignition for any fixed
vortex Reynolds number R, while decreasing B, slighdy from unity had the opposite effect. However, for
fixed B, increasing the vortex Reynolds number from zcro had little effect on the overall ignition ume. The
ignition location occurred in the region of the initially hotter reactant for small R, and was seen 10 spiral
clockwise towards the viscous core center as R increases.  Finally, numerical solutions of the ignition equa-
tions indicated that the hot spot was both axisymmetric and diffusion controlled for any non-zero vortex
Reynolds number. Thus, the asymptotic analysis of Dold (1985, 1989) could be used in describing this local
structure. The case of different initial temperatures, and the future time development of the hot spot, will be
considercd in a future manuscript.

In the diffusion flame regime, a simple model problem was proposed o investigate the eftect of the
vortex on the flame sheet. The model consisted of assuming that the time scale of the vortex was faster than
that of diffusion alonc, so that on this tme scale appropriate asymptotic expansions were used in describing
the interaction about the flame sheet. This model problem allowed for the full vortex flow field without
making the strain-shear approximation of Marble (1985). Many of the conclusions of Muarble (1985) were
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verified, including the similarity rule for the core radius growth in the limit of large vortex Reynolds
number.
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Table 1. IGNITION TIMES forR = 0

Br=-10 Br=-2 Br=0
present study 54912 13.146 5.813
Linan & Crespo 55.23 13.14 5.81
Table I1. IGNITION TIMES vs VORTEX REYNOLDS NUMBER (R)
R Br=-2 Br=0 Br=2
0 13.148 5.816 1.779
5 12.659 5.632 1.714
10 11.881 5.278 1.6094
20 11.378 4.793 1.541
30 11.559 4.586 1.566
40 11.680 4443 1.582
50 11.659 4.362 1.580
60 11.598 4314 1.572
70 11.535 4313 1.570
80 11.480 4.286 1.582
90 11.436 4.265 1.577
100 11.398 4231 1.545
200 11.203 4.162 1.544
300 11.122 4128 1.533
400 11.075 4.108 1.526
500 11.044 4.095 1.506
1000 10.960 4.067 1.506
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Figure 1. Plot of the ignition time &, versus vurtex Reynolds sumber R for S¢ = ¢ = 1 and (a) B; =-2,
(L) By =0, and (©) By = 2.
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Figure 4. Contour plot of Ty for By=-2, Sc=¢ =1 and @) R =5, (b) R =20, (¢) R = 28, and (d)
K = 100.
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Figure 8. Schematic showing the assumed instantancous flow field.
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